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Abstract.  The design cycle associated with large engineering systems requires an initial
decomposition of the complex system into design processes which are coupled through the
transference of output data.  Some of these design processes may be grouped into iterative
subcycles.  In analyzing or optimizing such a coupled system, it is essential to be able to
determine the best ordering of the processes within these subcycles to reduce design cycle
time and cost.  Many decomposition approaches assume the capability is available to
determine what design processes and couplings exist and what order of execution will be
imposed during the design cycle.  Unfortunately, this is often a complex problem and
beyond the capabilities of a human design manager.  A new feature, a genetic algorithm,
has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow
the design manager to rapidly examine many different combinations of ordering processes
in an iterative subcycle and to optimize the ordering based on cost, time, and iteration
requirements.  Two sample test cases are presented to show the effects of optimizing the
ordering with a genetic algorithm.

1. Introduction

Many engineering systems are large and multidisciplinary and require a complex design
cycle.  Before a design cycle begins, the possible couplings among the design processes
must be determined.  After these possible couplings have been defined, a design cycle can
be decomposed to identify its multilevel structure.  The Design Manager’s Aid for
Intelligent Decomposition (DeMAID) is a knowledge-based software tool for ordering the
sequence of design processes and for identifying a possible multilevel structure for a design
cycle (Rogers 1989).  The DeMAID software displays the processes in a design structure
matrix format (DSM) in which an element on the diagonal is any process that requires input
and generates an output (Steward 1981).  Off-diagonal elements indicate a coupling
between two processes.  The primary advantage of the DSM over display tools such as
Program Evaluation and Review Technique (PERT) or process flowcharts is the ability to
group and display the iterative subcycles that are commonly found in the design cycle.
After the iterative subcycles have been determined, their processes must be ordered in a
manner that will produce a design in the least time and at minimum cost.  The original
DeMAID software employs a knowledge base to handle this task; however, the knowledge-
based approach only examines a limited number of orderings, which provides the user a
starting point from which to interactively search for the optimum sequence.  This paper
introduces a genetic algorithm (GA) capability that has been added to DeMAID.  This GA
examines a large number of orderings of processes in each iterative subcycle and optimizes
the orderings based on cost, time, and iteration requirements.
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2. Design Structure Matrix

The DSM is used to display the sequence of processes (Steward 1981).  A sample DSM is
shown in Figure 1.  In the DSM,  the processes are shown as numbered boxes on the
diagonal.  Output from a process is shown as a horizontal line that exits a process box, and
input is shown as a vertical line that enters a process box.  The off-diagonal squares that
connect the horizontal and vertical lines represent couplings between two processes.
Couplings in the upper triangle portion of the DSM represent feedforward data; couplings
in the lower triangle part of the matrix represent feedback data.  A feedback implies an
iterative process in which an initial guess must be made.  The knowledge base within
DeMAID which is written with the C Language Integrated Production System (CLIPS,
Giarratano and Riley 1989) orders the processes to eliminate as many feedbacks as
possible.  However, in many cases, not all of the feedbacks can be eliminated.  If any
feedbacks remain, DeMAID groups the processes into iterative subcycles called circuits.  In
Figure 1, processes 1-3, 5-19, 21-25, and 26-29 are grouped into circuits.

Circuits

Feedback
Couplings

Feedforward
Couplings

Crossover

Figure 1. A design structure matrix.

The DeMAID software also identifies crossovers. Crossover, in this context, occurs
when feedback from one process crosses that of another process without an exchange of
data through the intersection (no off-diagonal square).  Crossovers are only defined in
terms of feedbacks.  For example, in Figure 1 a crossover occurs when the feedback from
process 14 to process 7 crosses the feedback from process 17 to process 12. Crossovers
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should be avoided if possible because they obscure when to end one iterative loop and
begin another.  The DSM shown in Figure 1 contains  20 feedbacks and 3 crossovers.

In the original version of DeMAID, a knowledge base was used to minimize feedbacks
and group processes into circuits.  Crossovers were identified but were not minimized.  No
time factors, cost factors, or iteration factors (i.e. the number of iterations required for
convergence) were applied.  After the circuits were identified, DeMAID attempted to
minimize the feedbacks within a circuit.  In most cases, although more than one ordering
could produce the minimum amount of feedbacks, only one ordering was identified.  

A large circuit such as the one shown in Figure 1 that contains processes 5-19 can be
very expensive to converge because the iterative loops defined by the feedbacks are nested,
which require numerous executions of potentially expensive processes.  Thus, a new
technique is needed that rapidly examines many different orderings of processes within a
circuit and selects the best ordering based on cost, time and iteration requirements.  The GA
capability that has been added to DeMAID meets this need.

3. Coupling Strengths

In the original version of DeMAID, a coupling either existed or not.  The  strength of the
coupling could not be quantified.  In the latest version of DeMAID, seven levels are used to
quantify coupling strengths  They are: extremely weak, very weak, weak, nominal, strong,
very strong, and extremely strong.  These strengths can be supplied by the user or they can
be determined through sensitivity analysis (Bloebaum 1992; Rogers and Bloebaum 1994)
and quantified according to rules in the knowledge base.  The rules for quantifying are
based on a statistical analysis of the normalized sensitivities.  Recommendations are made
as to which processes and couplings might be removed (or temporarily suspended) from
the problem without a loss of solution accuracy.  

The rules for removing or retaining processes are listed here.  All processes with at
least one coupling of nominal strength or greater are retained.  Processes with only
extremely weak coupling strengths are recommended for removal.  Other recommendations
depend on the relationships among the processes.  For example, in figure 1, if the
maximum coupling strength of process 19 is very weak, then in order to be retained, one of
the processes to which it is coupled (process 5, 6, or 22) must have an extremely strong
coupling strength.  Otherwise, process 19 is recommended for removal.  Similar rules exist
for removing or retaining couplings.

The DeMAID software also has the capability to display the DSM with color codings
for coupling strengths.  To eliminate the use of black boxes to represent couplings in the
off-diagonal elements, a color scheme can be used (i.e. extremely weak, red; very weak,
pink; weak, yellow; nominal, green; strong, light blue; very strong, blue; and extremely
strong; black). The user can interactively move processes along the diagonal to place the
weaker couplings which require fewer iterations for convergence into the feedback
positions.
After the complexity of the problem has been reduced by removing processes and/or
couplings, another examination can be made of the remaining circuits.  An iteration factor is
identified that relates the coupling strengths to the number of iterations required for
convergence.  The default values are shown in Table 1.  The user can override these default
values if necessary.  If coupling strengths are not available, the assumed number of
iterations for computational purposes is 1.
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TABLE 1. Relation of coupling strengths to iterations required for convergence.

         Coupling Strength Default Iterations
Extremely weak 2
Very weak 3
Weak 4
Nominal 5
Strong 6
Very strong 7
Extremely strong 8

4. Cost and Time Requirement Calculation

Rules were added to the DeMAID knowledge base to determine the total cost and time
required for a given design process. The DSM in Figure 2 is a circuit taken from a larger
design project.  Each process has been assigned a cost and a time (units depend on the
user).  The numbers in the left-hand column correspond to the original process numbers
assigned by the user.  The sequence of processes has been reordered by DeMAID.  This
circuit contains eight feedbacks and no crossovers.  Coupling strengths were not used to
estimate the required number of iterations for convergence for this problem; thus each
iteration factor is 1.
Numerous nested iterative processes are evident within this circuit.  The DeMAID software
sums the time and cost of each process contained in a feedback loop and multiplies those
sums by the iteration factor for the feedback.  For example, the costs and times for
processes 9-18 would be summed and multiplied by the iteration factor (1 in this case) for
the feedback coupling from process 18 to process 9.  The same would be accomplished for
processes 2-19 using the iteration factor (again 1) for the feedback from process 19 to
process 2.  This computation continues until the contributions from all eight feedbacks have
been summed.  The drawback to this capability is that it only examines one ordering and
makes no attempt to optimize the ordering based on cost and/or time.  Thus, a decision was
made to complement the knowledge base approach in DeMAID with a GA.  This GA
examines a large number of orderings of processes in each iterative subcycle and optimizes
the ordering based on cost, time, and iteration requirements.

Figure 2. A design structure matrix minimized for feedbacks and crossovers.
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5. Genetic Algorithm

The use of GA’s has been instrumental in achieving good solutions to discrete optimization
problems that have not been satisfactorily addressed by other methods (Goldberg 1989).
Because of the discrete nature of the sequencing problem, this solution technique has
proved useful in solving this problem (Syswerda, 1990).  A population of design points
that are coded as finite-length, finite-alphabet strings is searched by the GA.  Successive
populations are produced primarily by the operations of selection, crossover, and mutation.
The selection operator determines those members of the population that survive to
participate in the production of members of the next population.  Selection is based on the
value of the fitness function, or the fitness of the individual members, such that members
with greater fitness levels tend to survive.  Crossover is the recombination of traits of the
selected members, called the mating pool, in the hope of producing a child with better
fitness levels than its parents.  Crossover is accomplished by swapping parts of the string
into which these design points have been coded.  The final operation, mutation, prevents
the search of the space from becoming too narrow.  After the production of a child
population, this operator randomizes small parts of the resulting strings, with a very low
probability that any given string position will be affected.

Frequently, a binary coding is used with the GA; the values of the design variables are
coded as binary numbers and then concatenated.  While this approach works well with
numerical problems, it is not efficient for the sequencing problem (Altus et al 1995;
McCulley and Bloebaum 1994).  The GA portion of DeMAID uses a direct representation
of the order as a coding of an     n    -process system, with each integer 1 through     n     used only
once.  For example, the string

[5 3 4 2 1]

represents the five-process DSM shown in Figure 3, in which the order from the top left
corner of the DSM to the bottom right corner is 5, 3, 4, 2, and 1.

5

3

4

2

1

Figure 3.  Five-process design structure matrix.

Selection, which only requires the use of the fitness function, is unaltered by this
choice of coding.  However, special operators for crossover and mutation must be used
because these operators operate directly on the strings.  The concern is that the result after a
GA crossover or mutation operation must be a valid order (i.e. no repeated or missing
processes).  Valid orders cannot always be guaranteed with arbitrary switching of string
information between or within strings.
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Selection is accomplished by the tournament selection operator.  To fill the mating pool,
two strings are randomly selected from the parent pool and compared; the one with greater
fitness is included in the mating pool.  Crossover is accomplished by position-based
(Syswerda, 1990) crossover as shown in Figure 4.  Several processes (i.e. 1, 4, 5, and 6)
are chosen from the first parent and placed in the same positions in the child string.  Then,
the processes (i.e. 2, 3, and 7) that were not taken from the first parent are taken from the
second parent to fill the holes in the child string in the order in which they appear in the
second parent.  The result is a complete string with one and only one copy of each process
number.

1 7 2 4 3 5 6

1 2 3 4 7 5 6

6 5 2 1 3 7 4

Parent 1

Parent 2

Child

Figure 4. Position-based crossover.

Mutation is accomplished through the order-based (Syswerda, 1990) mutation
operator, as shown in Figure 5.  Each string position is polled; if a given string position
(i.e. position 2) is selected to undergo mutation, then its content is swapped with a
randomly selected position (i.e. position 4) in the same string.

1 7 2 4 3 5 6Parent

1 4 2 7 3 5 6Child

Selected for mutation
Swap with

Figure 5. Order-based mutation.

In addition to minimizing feedbacks and crossovers, the fitness function for the GA in
DeMAID can be used to determine the minimum cost and time required for convergence of
each circuit. The GA sums the time and cost of each process contained in a feedback loop
and multiplies those sums by the iteration factor for the feedback to obtain the total cost and
time to converge a circuit.  The user-definable weights determine the relative importance of
each of the major components of the fitness function.  The fitness function is:

fitness=1.0/((     wf   *   f   +     wc   *   c   +     wtime   *   time   +     wcost   *   cost   )**4)
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where    f    is the number of feedbacks,    c    is the number of crossovers,    time    is the total time
required to converge the circuit,    cost    is the total cost to converge the circuit; and      wf   ,      wc   ,
     wtime   , and      wcost    are user-definable weights.  For the simple tournament selection, the
relative scale of this fitness function is not important.  Only the relation of the values (i.e.
whether one fitness function is larger than the other) matters.

Each circuit is passed to the GA to optimize individually.  A window (Figure 6) is
displayed for each circuit.  The window indicates the default values for the GA.  The GA
begins with a randomly generated initial population of a size determined by the user and
proceeds from generation to generation by applying the three previously described
operations.

Figure 6. Window for setting genetic algorithm parameters.

The following parameters, shown in Figure 6, are available with their defaults in
parentheses:

•  Population (100) - population size
•  Mutation Probability (1.0) - mutation probability in percent, default is 1%
•  Convergence Threshold (0.9) - a converged population is one for which the average

fitness is at least convThresh of the best fitness, with the best fitness seen so far
(default is 90%)

•  Seed (3818969) - seed for random number generator
•  Max Iterations (500) - maximum number of iterations to find the best sequence
•  wt. Cost (1.0) - cost weight
•  wt. Time (1.0) - time weight
•  wt. FB (1.0) - feedback weight
•  wt. CO (1.0) - crossover weight

Convergence is achieved when the average fitness of a population rises above some
user-defined percentage (convergence threshold) of the best fitness for that population.  At
that point, the member of the population with the best fitness is chosen as the optimal.
After the GA has completed ordering all the circuits, a new DSM can be displayed to
demonstrate the changes.
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6. Sample Cases

The two examples below indicate the savings that can be obtained by reordering the
sequence of modules.  In the figures, each process is assigned a cost and a time (units
depend on the user). The numbers in the left-hand column correspond to the original
process numbers assigned by the user.  The sequence of processes has been reordered by
DeMAID.  Each table displays the modules coupled by feedbacks (iterative loops) for the
corresponding DSM with the number of iterations for the feedback coupling along with the
total time and cost to converge each iterative loop.

The DSM in Figure 7 is a circuit taken from a conceptual design project. This circuit
contains 24 feedbacks and 16 crossovers.  Coupling strengths are used to estimate the
number of iterations required for convergence.

Figure 7. A design structure matrix for example 1

The DSM in Figure 8 contains the same set of processes with the same times, costs,
and coupling strengths that are shown in Figure 7.  However, the sequence of processes
has been reordered and optimized by the GA and are different from those in Figure 7 as
shown by the numbers in the left-hand column.  This DSM contains eight feedbacks and no
crossovers.
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Figure 8. Reordering of the design structure matrix for example 1

Table 2 contains the data corresponding to Figure 7.  The total design cycle for this
DSM requires 21,340 time units and 19,640 cost units for completion.

TABLE 2. Time and cost for iterations in unordered design cycle for example 1.

     To module     From module      Iterations      Time        Cost
    1     2 8     560        400

  1   6 4     600        840
  2   8 8   1680      1680
  3   6 2     160        320
  4   9 7   1260      1260
  5 18 6   2580      2460
  6 11 8   1760      1120
  7   8 6     540        180
  8   9 2     140        100
  8 10 8     720        720
  8 15 4     960        960
  8 20 7   2940      2520
10 17 8   1760      2080
11 12 5     350        250
12 13 3     180        180
13 14 6     300        420
14 15 8     400        560
14 20 4     920        760
15 16 6     300        420
16 17 7     350        490
16 21 8   1600      1280
17 18 8     560        400
18 19 6       540        180
19 20 2     180          60
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Table 3 contains the data corresponding to Figure 8. The number of processes
contained in the iterative loops has been reduced by reordering the sequence with the
modified GA.  With the same summing method described before, the total cost to complete
the design cycle with this optimized ordering sequence is reduced from 19,640 to 3,950
units and the total time is reduced from 21,340 to 4,570 units.

TABLE 3. Time and cost for iteration in ordered design cycle for example 1.

      To module      From module     Iterations     Time     Cost
  1 11    5     1700     1600
  5   6    7       350       490
  6   7    8       560       400
  7   8    6       540       180
  8   9    2       180       400
11 21    3       960     1020
14 17    2       280       200

The DSM in Figure 2 is a circuit taken from another design project. The sequence of
processes has been reordered by DeMAID.  This circuit contains 8 feedbacks and no
crossovers.  Coupling strengths are not available therefore, the number of iterations
required for convergence is set to 1.

The DSM in Figure 9 contains the same set of processes with the same times and costs,
that are shown in Figure 2.  However, the sequence of processes has been reordered and
optimized by the GA and are different from those in Figure 2 as shown by the numbers in
the left-hand column.  This DSM also contains 8 feedbacks and no crossovers.

Figure 9. Reordering of the design structure matrix for example 2.

Table 4 contains the data corresponding to Figure 2.  The total design cycle for this
DSM requires 2,430 time units and 2,330 cost units for completion.
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TABLE 4. Time and cost for iteration in unordered design cycle in example 2.

      To module      From module     Iterations       Time     Cost
  1 21    1       590       620
  1 23    1       680       650
  2   3    1         50         40
  2 19    1       530       520
  4   6    1          70        50
  7   9    1       130         80
  9 18    1       290       340
22 23    1        90          30

Table 5 contains the data corresponding to Figure 9. The number of processes
contained in the iterative loops has been reduced by reordering the sequence with the
modified GA.  The total cost to complete the design cycle with this optimized ordering
sequence is reduced from 2,330 to 1,510 cost units and from 2,430 to 1,730 time units.

TABLE 5. Time and cost for iteration in ordered design cycle for example 2.

      To module      From module     Iterations       Time       Cost
  1 16    1       480       430
  1 18    1       560       490
  2   3    1         50         40
  3   9    1       210       170
  4    5     1          50         40
 11  12     1          80         80
12 14    1       130         80
18 23    1       170       180

In the above examples, the number of processes contained in the iterative loops has
been reduced by reordering the sequence with the modified GA.  This reordering requires
about 1 minute on a Macintosh Quadra 700.  In each case, the total cost and time in the
design cycle are substantially reduced by reordering the sequence of the design processes.

7. Concluding Remarks

The Design Manager’s Aid for Intelligent Decomposition (DeMAID) is a knowledge-based
software tool for ordering the sequence of complex design processes, grouping iterative
subcycles, and identifying a possible multilevel structure for a design cycle.  The DeMAID
software displays the processes in a design structure matrix format in which an element on
the diagonal is any process that requires input and generates output.  Off-diagonal elements
indicate a coupling between two processes.  The knowledge base in DeMAID attempts to
eliminate all feedbacks in the design cycle.  If all feedbacks cannot be eliminated, iterative
subcycles are identified.  If sensitivity analysis results are available, the DeMAID software
can be used to examine the ordering within a subcycle to determine the strengths of the
couplings between any two processes.  These coupling strengths, when input to the
knowledge base, determine those processes and couplings might be removed or
temporarily suspended without sacrificing system solution accuracy.  In addition, a relation
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is formed between the coupling strengths and the number of iterations required to converge
the iterative processes that are created by a feedback coupling.

In the original version of DeMAID, the optimal ordering of processes in an iterative
subcycle was generated with a knowledge base, and only minimized the number of
feedbacks.  The primary drawback to the original method was that only a single ordering
sequence could be examined at a time.  Changes to the sequence were made interactively
and then the costs and times were re-evaluated.  This process was extremely slow with no
guarantee that a reasonable optimum sequence would be found.  

To remedy this problem, a genetic algorithm has been added to DeMAID to examine
many possible orderings of the design processes in a design cycle.  Each process can now
have a time and/or cost associated with it.  The GA in DeMAID examines the iterative
subcycles to determine their time and cost.  The GA fitness function is computed by
summing the time and cost of each process contained in an iterative loop and multiplying
the totals by the number of iterations required for convergence based on the coupling
strength of the feedback coupling forming the loop.  The GA determines the best ordering
of each iterative subcycle by minimizing the total cost and time requirements, in addition to
minimizing the number of feedbacks and crossovers for a particular ordering.  This
modification increases the likelihood that an optimal or near optimal sequence will be
found.
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